Global Conditioning for Probabilistic Inference in Belief Networks

نویسندگان

  • Ross D. Shachter
  • Stig K. Andersen
  • Peter Szolovits
چکیده

In this paper we propose a new approach to probabilistic inference on belief networks, global conditioning, which is a simple gener­ alization of Pearl's (1986b) method of loop­ cutset conditioning. We show that global conditioning, as well as loop--cutset condition­ ing, can be thought of as a special case of the method of Lauritzen and Spiegelhalter (1988) as refined by Jensen et al (1990a; 199Gb). Nonetheless, this approach provides new op­ portunities for parallel processing and, in the case of sequential processing, a tradeoff of time for memory. We also show how a hybrid method (Suermondt and others 1990) com­ bining loop-cutset conditioning with Jensen's method can be viewed within our framework. By exploring the relationships between these methods, we develop a unifying framework in which the advantages of each approach can be combined successfully.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combination of exact algorithms for inference on Bayesian belief networks

Cutset conditioning and clique-tree propagation are two popular methods for exact probabilistic inference in Bayesian belief networks. Cutset conditioning is based on decomposition of a subset of network nodes, whereas clique-tree propagation depends on aggregation of nodes. We characterize network structures in which the performances of these methods differ. We describe a means to combine cuts...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

Initialization for the Method of Conditioning in Bayesian Belief Networks

Suermondt, H.J. and G.F. Cooper, Initialization for the method of conditioning in Bayesian belief networks (Research Note), Artificial Intelligence 50 (1991) 83-94. The method of conditioning allows us to use Pearl's probabilistic-inference algorithm in multiply connected belief networks by instantiating a subset of the nodes in the network, the loop cutset. To use the method of conditioning, w...

متن کامل

Extensible Multi-Entity Models: A Framework for Incremental Model Construction

Graphical models have become common for representing probabilistic models in statistics and artificial intelligence. A Bayesian network is a graphical model which encodes a probability model as a directed graph in which nodes correspond to random variables, together with a set of conditional distributions of nodes given their parents. In most current applications of Bayesian networks, a fixed n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994